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Abstract. A standing conversational group (also known as F-formation) occurs
when two or more people sustain a social interaction, such as chatting at a cocktail
party. Detecting such interactions in images or videos is of fundamental impor-
tance in many contexts, like surveillance, social signal processing, social robotics
or activity classification. This paper presents an approach to this problem by mod-
eling the socio-psychological concept of an F-formation and the biological con-
straints of social attention. Essentially, an F-formation defines some constraints
on how subjects have to be mutually located and oriented while the biological
constraints defines the plausible zone in which persons can interact. We develop
a game-theoretic framework embedding these constraints, which is supported by
a statistical modeling of the uncertainty associated with the position and orienta-
tion of people. First, we use a novel representation of the affinity between pairs
of people expressed as a distance between distributions over the most plausi-
ble oriented region of attention.Additionally, we integrate temporal information
over multiple frames to smooth noisy head orientation and pose estimates, solve
ambiguous situations and establish a more precise social context. We do this in
a principled way by using recent notions from multi-payoff evolutionary game
theory. Experiments on several benchmark datasets consistently show the superi-
ority of the proposed approach over state of the art and its robustness under severe
noise conditions.

1 Introduction

After decades of research on the automated modeling of individuals, the computer vi-
sion community has recently started focusing on the new problem of analyzing groups
[1–10]. In this paper, we focus on standing conversational groups, also known as F-
formations [11], that is, groups of people who spontaneously decide to be in each
other’s immediate presence to converse with each and every member of that group.
Standing conversational groups are of primary importance in many contexts, from video
surveillance [7] to social signal processing [2, 6, 4, 1], from multimedia [3] to social
robotics [12] and activity recognition, as we will discuss extensively in Sec. 2. Many
studies have been carried out by social psychologists to understand how people behave
in public. By exploiting the theory behind these findings, we propose novel and more
? Author has been partially supported by the European Commission under contract number FP7-
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Fig. 1. Standing conversational groups: a) in black, graphical depiction of overlapping space
within an F-formation: the o-space; b) a poster session in a conference, where different groupings
are visible; c) circular F-formation; d) a typical surveillance setting where camera is located at
2.5-3 meters from the floor, for which detecting groups is challenging.

socio-psychologically principled ways of designing methods for automatically analyz-
ing human behavior. For example, Hall [13] proposed that relationships and levels of
interactions could be inferred by considering different social distances. Goffman [14]
observed that group interactions can be categorized into those that are ‘focused’ and
those that are ‘unfocused’. Focused interactions concern the gathering of people to par-
ticipate in an activity where there is a common focus, such as playing and watching
a football match, conversing, or marching in a band. Unfocused encounters involves
light interactions such as avoiding people on a street, briefly greeting a colleague while
passing them in the corridor, or indicating to let someone pass when boarding a train.

Within the class of focused encounters, the F-formation is a specific type of group
interaction which requires more attention from our senses. Specifically, an F-formation
arises “whenever two or more individuals in close proximity orient their bodies in such
a way that each of them has an easy, direct and equal access to every other participant’s
transactional segment, and when they maintain such an arrangement” [15, p. 243]. Some
example of F-formations from real-world images are illustrated in Fig. 1a. There can be
different F-formations as shown in Fig. 2a-e. In the case of two participants, typical F-
formation arrangements are vis-a-vis, L-shape, and side-by-side. From an F-formation,
three social spaces emerge: the o-space, the p-space and the r-space. The most important
part is the o-space (see Fig. 2), a convex empty space surrounded by the people involved
in a social interaction, in which every participant looks inward, and no external people
are allowed. The p-space is a narrow strip that surrounds the o-space, and that contains
the bodies of the conversing people, while the r-space is the area beyond the p-space.

Our goal in this paper is to develop a robust approach to automatically detect F-
formations from images and videos employing a single monocular camera. As input,
the approach requires the position of the persons in the scene on the ground plane as
well as their body orientation, although in most cases, head orientation is more readily
captured, even under heavy occlusion. These cues are easily obtainable nowadays, even
if they are not estimated very accurately, and many approaches are devoted to these
goals [16, 17, 4]. A recent experimental work of Setti et al. [18] shows that substantial
improvement in the performance of F-formation detection algorithms can be achieved
by combining a probabilistic approach such as the one developed in [7] and graph-
based clustering methods [6]. Motivated by these findings, we develop a new, robust,
psychologically-principled approach which combines in a natural way the modeling of
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Fig. 2. F-formations; a) components of an F-formation: o-space, p-space, r-space; in this case,
a face-to-face F-formation is sketched; b) modeling the frustum of attention by particles: in the
intersection stays the o-space; c) L-shape F-formation; d) side-by-side F-formation; e) circular
F-formation.

the uncertainty in the position and orientation of a subject and a game-theoretic clus-
tering approach which allows one to extract coherent groups in edge-weighted graphs,
digraphs and hypergraphs [19, 20]. The game-theoretic setting provides a conceptual
framework which allows also us to integrate temporal information in a principled way,
in an attempt to reliably extract groups in video sequences under severe tracking noise.
This is done by using a recent approach to integrate multiple payoff functions in an
evolutionary game-theoretic setting [21].

Our approach is a substantial contribution for the computer vision community: so
far, grouping behaviors have been analyzed mainly in dynamic situation via tracking,
exploiting the oriented velocity as a primary cue, for example by associating individu-
als’ tracklets [22–30]. In our case, F-formation are manifested primarily when people
are still, so that a finer yet robust analysis is required.

To test the effectiveness of the proposed approach, we performed extensive experi-
ments over five different datasets, each of which represents a particular scenario. In par-
ticular, we used a synthetic dataset [7], the Coffee Break dataset [7], the GDet dataset
[7], the Idiap Poster data dataset [6], and the Cocktail Party [5] dataset. We also car-
ried out systematic noise resistance experiments to fully investigate the stability of our
method. The results consistently show the superiority of the proposed approach over
the state of the art.

The rest of the paper is organized as follows. A detailed review of the literature
on group detection approaches is presented in Section 2. Our approach is detailed in
Section 3. In Section 4 we describe the game-theoretic clustering approach we use to
extract F-formations and its extension to multiple affinity matrices. Finally, Section 5
presents the experimental results and Section 6 concludes the paper.

2 Literature review

2.1 Groups

During multi-party activities, we expect that there is a different underlying structure
that governs the behavior of groups compared to individuals acting independently. For
example, there has has been considerable prior work on estimating group activities by
modeling behavior at the individual as well as group level [8–10]. However, unlike
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works that treat all group structures equivalently, our premise is that there are funda-
mental semantic differences in what this prior work has considered to be a ’group’ and
what we refer (from the social psychological literature) as an ’F-formation’ [11]. These
prior definitions of a group of people assume that they are necessarily close together
because they are for example, forming a queue, watching a football match, crossing
the road together, or asked to mingle in a specific location. Some of these principles
informed early socially-motivated methods of people tracking [31] by the social force
model [32], that originated from pedestrian simulation research.

In more semantically meaningful social cases, one can attribute meaning to group-
ings based on some form of acquaintanceship, such as for detecting when people are
traveling together [24] or when people are conversing in a lecture hall [2]. However in
free standing scenarios, when people come together physically in order to make conver-
sation, a specific, unspoken, and mutual agreement is made between all those involved
that they wish to converse for some extended but finite period of time. Such an inter-
action requires a focusing of the senses, compared to the other group behaviors which
can rely more on peripheral and unfocused sensing.

Importantly, the region in front of the body in which limbs can reach easily, and
hearing and sight is most effective was defined as the transactional segment. A neces-
sary condition of the F-formation was that the transactional segments of all members of
an F-formation should overlap. Such a region can be considered an individual’s frustum
of social attention.

2.2 Exploiting visual attention

Considering this idea of frustum of attention, computer vision researchers have consid-
ered how the head pose can be used as a proxy for visual attention [33]. For visually
led tasks such as looking at adverts [33], considering the visual attentional mechanisms
is useful. However, when considering social contexts, the concept of social attention
is a relatively new domain in the social sciences [34]. More specifically, head pose is
actually equally if not more perceptually salient as a cue for gaze direction in humans
[34, Ch. 6]. Moreover Kendon studied the role of gaze direction during conversational
interactions suggesting that it functions as a cue for turn-taking, holding, or yielding
[35]. Jovanovic and Op den Akker also found that addressees could be identified using
gazing cues [36], while Duncan found that speakers attracted the gaze of listeners [37]
during conversations. Ba and Odobez [38] exploited findings in primate social behavior
by modeling plausible eye-in-head positions for gaze estimation to estimate the visual
focus of attention of participants during meetings using only head pose while Subrama-
nian et al. [39] used both gaze and head pose to estimate social attention in meetings.

2.3 Conversational groups detection

For the specific task of detecting F-formations, different approaches have been pro-
posed. Groh et al. [1] proposed to use the relative shoulder orientations and distances
(using markers attached to the shoulders) between each pair of people as a feature vec-
tor for training a binary classification task. Cristani et al. [7] proposed to solve the task
using a Hough voting strategy which accumulated a density estimating the location of
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the o-space. Concurrently, Hung and Kröse [6] proposed to consider an F-formation as
a dominant-set cluster [40] of an edge-weighted graph where each node in the graph
was a person, and the edges between them measures the affinity between pairs.

Later these two approaches were compared by Setti et al. [18] to investigate the
strengths and weaknesses of both approaches for the F-formation task. They found that
while the method of Cristani et al. [7] was more stable using head orientation infor-
mation in the presence of noise, the method of Hung and Kröse [6] performed better
when only position (and not orientation) information was available. Setti et al. [41] also
proposed to handle the physical effect that different cardinalities of the F-formations
sizes would have on the most plausible physical spatial layout of each member of the
group. By taking this into account using separate accumulation spaces for each size,
they were able to improve over the original Hough voting strategy proposed in [7]. A
similar density-based approach has also been proposed by Gan et al. [3] where the fi-
nal purpose of the task was to dynamically select camera angles for automated event
recording. Tran et al. have subsequently analyzed temporal patterns of activities [10].

3 Our approach

Given a dataset of frames with positions of the persons and head/body orientations, the
pipeline of the algorithm can be summarized in the following steps:

1. For each person pi ∈ P in a frame/scene, generate a frustum fi based on his posi-
tion and orientation as modeled by a 2-dimensional histogram (see Sec. 3.1)

2. Compute a pairwise affinity matrix for each pi ∈ P (see Sec. 3.2)
3. Extract F-formation (clusters) using evolutionary stable strategy-clusters (see Sec.4)

3.1 Frustum of attention modeling

Our frustum of social attention is inspired by Kendon’s definition of a transactional
segment. This takes into account both the field of view of the person and also the locus
of attention of all other senses for a given body orientation. Since it is typically easier
to obtain head pose rather than body or gaze orientation in crowded environments (due
to occlusions), the head pose provides an approximation of the direction of the social
attention frustum. It is characterized by a direction θ (which is the person’s head ori-
entation), an aperture α (we used α = 160◦ which was reported by Ba and Odobez
[38], who used the same measure for approximating the range of possible eye gaze
directions given a specific head pose) and a length l. These three elements determine
the socio-attentional frustum of a person. Given the parameters (θ, α and l) the frustum
is modeled as a 2-dimensional (x and y position in the ground plane) Gaussian distri-
bution in which each of the dimensions are generated independently. The parameter l
corresponds to the variance of the Gaussian distribution centered around the location
of a person. Therefore, a denser sampling is possible at locations closer to the person
and decrease in density further away (after 3 ∗ σ the number of sample are close to
zero). The frustum is generated by drawing samples from the above Gaussian kernel
and by keeping only those that fall within the cone (see Fig. 3). Given a person located
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Fig. 3. In figure is shown the process of generating the frustum: a) given the i-th person position
and orientation a cone of aperture α = 160◦ is over imposed b) the 2D Gaussian set of samples
are generated c) only the biologically feasible samples are kept d) binning of the space on a
20× 20 grid to get the final histogram representation hi.

at p(x, y), with head orientation θ, a sample s(x, y) is inside the frustum if

acos

(
s · fL
||s|| ∗ l

)
≤ α

2
(1)

where fL = {cos(θ) ∗ l, sin(θ) ∗ l} is the line of symmetry of the frustrum, a vector
of length l and angle θ. This sampling process is iterated until the desired number
of samples that falls in the cone is reached. The region that these samples represent
intuitively models the transactional segment of a person. Each person in a scene is thus
modeled using his frustum represented as 2-dimensional histogram hi of size Nc ×Nr
normalized by the number of samples (s), where Nc and Nr span over the area of the
scene captured by the camera.Experimentally, changing the value of the granularity
such that Nc ×Nr = 400, 2500, 10000 did not change the overall performance (on the
benchmarks we tried). Therefore, we keep the granularity fixed at 400 bins.

3.2 Quantifying pairwise interactions

Two persons are more likely to be interacting if their social attention frustums overlap.
By quantifying the pairwise interaction as a distance between distributions, we are able
to encode the uncertainty about the true transactional segment of the person given their
head pose. Since we are dealing with histograms that represent discrete probability dis-
tributions, it is natural to consider information-theoretic measures to model the distance
between them.

Given a pair of discrete probability distributions P = {p1, . . . , pn} and Q =
{q1, . . . , qn}, the first natural choice to measure their distance is given by the well-
known Kullback-Leibler (KL) divergence, which is defined as:

D(P ||Q) =

n∑
i=1

log pi
pi
qi

(2)

The KL-divergence is known to be asymmetric. A symmetric version of the KL-divergence
measure is the Jensen-Shannon (JS) divergence, which is defined as:

J(P,Q) =
D(P ||M) +D(Q||M)

2
(3)
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where M = 1
2 (P +Q) is the mid-point between P and Q. Hence, given two persons i

and j in a scene and their vectorized histograms hi and hj , the distance between i and
j can be calculated either as D(hi||hj) or as JS(hi, hj).

To obtain a measure of affinity, rather than distance, between each pair of histograms
we used the classical Gaussian kernel:

γ(i, j) = exp

{
−d(hi, hj)

σ

}
(4)

where the funtion “d” refers to either the KL- or the JS-divergence. The parameter σ
in Eq. 4 allows intrinsic properties of the scene (e.g., how far people usually stand
from each other when they are in an F-formation) to be taken into account. Once we
calculate this measure, it becomes possible to find groups of persons that are interacting
by exploiting a grouping game, as described in the next section.

4 Grouping as a non-cooperative game

In this work we cast the approach proposed in [19, 20] in the problem of detecting F-
formations in terms of a non-cooperative clustering game. We choose this clustering
algorithm for a series of nice properties:

– The distance function is not required to be symmetric, e.g. the Kullback-Leibler
divergence.

– An a-priori number of clusters, like k-means, is not needed to be set since the
algorithm let the cluster to emerge by data similarities. This represents a necessary
condition since the number of groups in a scene is unknown.

– It search for maximal clique in a weighted graph which is an accepted definition of
F-formation in the computer science community [6].

– Game-theory domain provides us the theoretical foundation to integrates multiple
payoff matrices, thing of valuable importance when dealing with different temporal
instants (see Sec.4.1).

Given a set of elements O = {1 . . . n} and an n× n (possibly asymmetric) affinity
matrix A = (aij) which quantifies the pairwise similarities between the objects in O,
we envisage a situation whereby two players play a game which consists of simultane-
ously selecting an element from O. After showing their choice the players get a reward
which is proportional to the similarity of the chosen elements. In game-theoretic jargon
the elements of set O are the “pure strategies” available to both players and the affinity
matrix A represents the “payoff” function (specifically, aij represents the payoff re-
ceived by an individual playing strategy i against an opponent playing strategy j). In
our application, the objects to to be grouped (namely, the pure strategies of this group-
ing game) correspond to the persons detected in a scene, the payoff function being the
similarity measure between subjects as described in the previous sections.

A central notion in game theory is that of a mixed strategy, which is simply a proba-
bility distribution x = (x1, . . . , xn)

T over the set of pure strategiesO. Mixed strategies
clearly belong to the (n− 1)-dimensional standard simplex:

∆ =

{
x ∈ Rn :

n∑
i=1

xi = 1 and xi ≥ 0, i = 1, . . . , n

}
. (5)
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Given a mixed strategy x ∈ ∆, we define its support as σ(x) = {i ∈ O : xi > 0}.
The expected payoff received by an individual playing mixed strategy y against an

opponent playing mixed strategy x is given by yTAx. The set of best replies against
a mixed strategy x is defined as β(x) = {y ∈ ∆ : yTAx = maxz zTAx}. Finally,
a mixed strategy x ∈ ∆ is said to be a Nash equilibrium if it is a best reply to itself,
namely if x ∈ β(x) or, in other words, if

xTAx ≥ yTAx (6)

for all y ∈ ∆. If inequality holds strictly, then x is said to be strict Nash equilibrium.
Intuitively, at a Nash equilibrium no player has an incentive to unilaterally deviate from
it. The clustering game is supposed to be played within an evolutionary setting wherein
the two players, each of which is assumed to play a pre-assigned strategy, are repeatedly
drawn at random from a large population. Here, given a mixed strategy x ∈ ∆, xj (j ∈
O) is assumed to represent the proportion of players that is programmed to select pure
strategy j. A dynamic evolutionary selection process will then make the population state
x evolve according to a survival-of-the-fittest principle in such a way that, eventually,
the better-than-average (pure) strategies will survive while the others will get extinct.
Within this context, a mixed strategy x ∈ ∆ is said to be an evolutionary stable strategy
(ESS) if it is a Nash equilibrium and if, for each best reply y to x, we have xTAy >
yTAy. Intuitively, ESS’s are strategies such that any small deviation from them will
lead to an inferior payoff (see [42] for an excellent introduction to evolutionary game
theory).

In [19, 20] a combinatorial characterization of ESS’s is given which make them
plausible candidates for the notion of a cluster (which they call ESS-cluster). The mo-
tivation behind this claim resides in the property that ESS-clusters do incorporate the
two basic features which characterize a cluster, i.e.,

– internal coherency: elements belonging to the cluster should have high mutual sim-
ilarities;

– external incoherency: the overall cluster internal coherency decreases by introduc-
ing external elements.

We refer to [19, 20] for details. One of the distinguishing features of this approach is its
generality as it allows one to deal in a unified framework with a variety of scenarios,
including cases with asymmetric, negative, or high-order affinities. Note that, when the
affinity matrix A is symmetric (that is, A = AT ) the notion of an ESS-cluster coincides
with that of a dominant set [40], which amounts to finding a (local) maximizer of xTAx
over the standard simplex ∆.

Algorithmically, to find an ESS-cluster one can use the classical replicator dynamics
[42], a class of dynamical systems which mimic a Darwinian selection process over
the set of pure strategies. The discrete-time version of these dynamics is given by the
following update rule:

xi(t+ 1) = xi(t)
(Ax(t))i

x(t)TAx(t)
(7)

for all i ∈ O. The process starts from a point x(0) usually close to the barycenter of the
simplex ∆, and it is iterated until convergence (typically when distance between two
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successive states is smaller than a given threshold). It is clear that the whole dynamical
process is driven by the payoff function which, in our case, is defined precisely to favor
the evolution of highly coherent objects. Accordingly, the support σ(x) of the con-
verged population state x does represent a cluster, the non-null components of which
providing a measure of the degree of membership of its elements.

The support of an ESS corresponds to the indices of the elements in the same group.
To extract all the ESS-clusters we implemented a simple peel-off strategy: when an
ESS-cluster is computed the corresponding elements are removed from the original and
the replicator dynamics is executed again on the remaining elements.

4.1 Integrating multiple frames in video sequences

When dealing with videos, the inter-frame smoothness between consecutive frames can
be exploited to face cases of noisy data, such as wrong positions or head orientations.
The idea is simply to consider a buffer of K frames: at time t, we will have knowledge
of the frames at time t − K + 1, . . . , t, which can be used jointly for a more robust
group estimation. This keeps the process of group modeling on-line (it can lie on top
of the tracking algorithm), while permitting to prune out noise in an effective way.
Assuming that the movement of the same person between frames is smooth, given a set
of K consecutive frames, the problem is then to somehow integrate the corresponding
affinity matrices to perform the grouping process.

From our game-theoretic perspective this problem can be seen in the context of
multiple-payoff (or multi-criteria) games, a topic which has been the subject of intensive
studies by game theorists since the late 1950’s [43–46]. Under this setting, payoffs are
no longer scalar quantities but take the form of vectors whose components represent
different commodities. Clearly, the main difficulty which arises here is that the players’
payoff spaces now can be given only a partial ordering. Although in ”classical” game
theory several solution concepts have been proposed during the years, the game theory
community has typically given little attention to the evolutionary setting. Recently, a
solution to this problem has been put forward by Somasundaram and Baras [21] who
extended the notion of replicator dynamics and that of an ESS using the concept of
Pareto-Nash equilibrium. Another recent attempt towards this direction, though more
theoretical in nature, can be found in [47].

In the work reported in this paper, we follow the idea proposed in [21] which pro-
vides a principled solution to the problem of integrating multiple payoff functions. Us-
ing concepts from multi-criteria linear programming (MCLP) [48] they proposed a no-
tion of Pareto reply and of Pareto-Nash equilibrium and showed the equivalence with
”weighted sum scalarization”, a classical technique from multi-objective optimization
(see, e.g., [48]). Basically, this means that a Pareto-Nash equilibrium can be achieved
by integrating the K affinity matrices as follows:

Â =

K∑
i=1

wiAi (8)

where the wi’s (i = 1 . . .K) represent appropriate non-negative trade-off weights asso-
ciated to the different matrices, subject to the constraint

∑
i wi = 1. Formulated in this
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way, the problem of determining a Pareto-Nash equilibrium in a multi-payoff scenario
is now reduced to the problem of determining the correct trade-off weights, and this in
turn can be done by solving a multi-objective linear programming problem (MOLP). To
this end, following [21], in our experiments we used the multi-objective simplex method
(we refer the reader to chapter 7 of [48] and to the original paper [21] for details).

5 Experiments and results

We carried out experiments considering both the single (Sec. 5.3) and multiple-frame
methods (Sec. 5.4) under ideal and noisy situation. In the former, F-formations are es-
timated on each single frame independently, while in the latter we perform integration
over consecutive frames in order to smoothing noisy detection. Moreover we test the re-
silience of the method injecting increasing level of noise (Fig.5). Source code available
at http://www.iit.it/en/datasets-and-code/code/gtcg.html

5.1 Datasets

The five datasets used (see Tab.1) are the currently publicly available benchmarks for
detecting F-formations, where for each individual in a scene his x, y position and the
head orientation are provided. Consecutive frames are available for two of them with
a low frame rate. In three cases the annotation has been done via automatic tracking
while other two were manually annotated by the respective authors as stated in Tab. 1.

PosterData [6]: it consists of 3 hours of aerial video of over 50 people during a sci-
entific meeting involving poster presentations and a coffee break. 82 distinct image
frames were selected based on maximizing differences between images, ambiguity in
group membership and varying levels of crowdedness. 21 trained annotators were split
into 8 trios who annotated 10-11 images for F-formations, leading to a subjective rep-
resentation of the ground truth.

CocktailParty [5]: The CocktailParty dataset contains 16 minutes of video recordings
of a cocktail party in a 30m2 lab environment involving 7 subjects. The party was
recorded using four synchronized angled-view cameras (15Hz, 1024 × 768px, jpeg)
installed in the corners of the room. The dataset is challenging for video analysis due to
frequent and persistent occlusions, in a highly cluttered scene. Subject’s positions and
horizontal head orientations were logged using a particle filter-based body tracker with
head pose estimation. Groups in one frame every 3 seconds were annotated manually
by an trained expert, resulting in a total of 320 distinct frames for evaluation.

CoffeeBreak [7]: The dataset focuses on a coffee-break scenario of a social event, with
max 14 individuals organized in groups of 2-3 people. People’s positions were estimated
by exploiting multi-object tracking on the heads, and head detection has been performed
afterward, considering solely 4 possible orientations (Front, Back, Left, Right). The
tracked positions were projected onto the ground plane. A trained expert annotated the
videos indicating the groups present in the scenes (in combination with questionnaires
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Dataset #Sequences #Frames Consecutive Automated
× seq. Frames Tracking

CoffeeBreak 2 45,74 Y Y
CocktailParty 1 320 Y Y

GDet 5 132,115,79,17,60 N Y
PosterData 82 1 N N

Synth 10 10 N N
Table 1. Datasets: multiple #Frame indicate diverse sequences, in these cases the final results are
averaged over the sequences and normalized by the number of frames.

that the subjects filled in about the number of people they spoke with)on two different
coffee breaks, for a total of 45 frames for Seq1 and 75 frames for Seq2, acquired in a
period of 3 seconds.

Synth [7]: A trained expert synthesised 10 different situations, with F-formation and
singletons Each situation is repeated 10 times, with slightly varying position and orien-
tation of the subjects. Here, noise in the position and orientations are absent.

GDet [7]: these videos consider a vending machines area where people take coffee
and other drinks, and chat. In this case the head orientation considers solely 4 possible
alternatives. Here the frame rate is very low, so that the multiple frame approach cannot
be applied.

As comparative approaches, we consider the Hough-based approach of [7] in its re-
newed version of [18] (HFF), the hierarchical extension of the Hough-based approach
of [41] (MULTI), and the dominant-set-based technique of [6](DS). Comparison with
other baselines are not reported in Tab. 2 since are already carried out and overcomed
in [18, 7].

5.2 Evaluation metrics and parameter exploration

In terms of evaluation, as in [18], we consider a group as correctly estimated if at least
d(T · |G|)e of their members are found by the grouping method were correctly detected
by the algorithm, and if no more than 1−d(T · |G|)e false subjects are identified, where
|G| is the cardinality of the labeled group G, and T = 2/3. Based on this metrics,
we produce precision, recall and F measure per frame; averaging these values over the
frames gives the final scores.

Different combination of parameters are explored and validated on each dataset. In
particular we examine the response of our approach when using the similarity functions
(Eq. 2 and 3 ), by changing the value of σ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9} and the
length of the frustum l = {20, 25, 30, 40, 50, 60, 80, 150}.

5.3 Single frame experiment

Tab. 2 shows the parameters used and the quantitative results obtained in the single-
frame modality while in Fig.4 qualitative results of our group detector is shown com-
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CoffeeBreak (S1+S2) PosterData Gdet

Method Prec Rec F1 Prec Rec F1 Prec Rec F1
HFF [18] 0,82 0,83 0,82 0,93 0,96 0,94 0,67 0,57 0,62

DS ( [6], [18]* ) 0,68 0,65 0,66 0,93 0,92 0,92 - - -
MULTISCALE [41] 0,82 0,77 0,80 - - - - - -

Our KL 0,80 0,84 0,82 0,90 0,94 0,92 0,76 0,75 0,75
σ=0.2 , l=40 σ=0.2 l=30 σ=0.5 l=80

Our JS 0,83 0,89 0,86 0,92 0,96 0,94 0,76 0,76 0,76
σ=0.2 , l=50 σ=0.3 , l=25 σ=0.5 l=80

Cocktail Party Synth
Method Prec Rec F1 Prec Rec F1

HFF ( [7], [41] ) 0,59 0,74 0,66 0,73 0,83 0,78
MULTISCALE [41] 0,69 0,74 0,71 0,86 0,94 0,90

Our KL 0,85 0,81 0,83 1,00 1,00 1,00
Our JS 0,86 0,82 0,84 1,00 1,00 1,00

σ=0.5 , l=60 σ=0.1 , l=30
Table 2. Results on single frame: only the best results are shown while the parameters are dis-
cussed in the paper (σ in Eq.4 and l in Eq.1). The comparative methods are: HFF [7], DS [18],
MULTISCALE [41], JS orKL is our method using respectively the Jensen-Shannon (Eq.4) and
the Kullback-Leibler (Eq.3) divergence. Maximum value for standard deviation for precision is
0.74% and for recall is 0.75%. * Note that in [18] the parameters for the DS method were not
fully optimised.

pared with other method. As done in the comparative approaches, we show here the per-
formances obtained with the best parameter settings, using both the Kullback-Leibler
divergence (KL) and the Jensen-Shannon (JS) and averaged over 5 runs to evaluate the
stability. As shown, the only case where we do not outperform the state of the art is
on the Poster Data, with a difference of 1% in the precision with respect to HHF[18]
and DS [6], a difference which is close to the maximum estimated variance of our ap-
proach. In the other cases, the results are definitely superior, saturating for example the
synthetic benchmark, and outperforming by over 10% the F-measure on the GDet and
the CocktailParty. It is worth noting that the performances across the different runs of
the algorithm have been quite stable, with a mean standard deviation of ' 0.74% for
both the precision and recall values.

5.4 Multiple frame experiment

The results are reported in Fig.5. Compared with the single-frame approach, in a noise-
less tracking situation (blue curve), this version gives comparable results. As shown,
the temporal integration varies almost uniformly except a slight increase in the Cof-
feeBreak Seq.1. In the case of noise (green,red and cyan curves) the single frame (first
point on the curves) provides a low F score and is completely dominated by the multi-
frame version, irrespective of the number of frames considered in the buffer. To em-
phasize this fact a noise analysis on the CoffeeBreak and Cocktailparty datasets has
been done. In these sequences, to simulate cluttered situations or noisy detector, we
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(a) Seq 1 (b) Seq 1 (c) Seq 2 (d) Seq 2

Fig. 4. Qualitative results on the CoffeeBreak dataset compared with the state of the art HFF [7].
In yellow the groundtruth, in green our method and in red HFF. As evident from (a,b,c,d) HFF
often fails in detecting groups of more than two persons while our approach is more stable.

injected noise in the orientation of persons by randomly selecting the frames to cor-
rupt and the number of people to consider. In particular, the added orientation noise (γ)
was 0-mean Gaussian, with a standard deviation varing in {π8 ,

π
4 ,

π
2 ,

2
3π}. The amount

of frames and persons affected by noise was set by selecting from these percentages:
F = {0%, 25%, 50%, 75%}, where the percentages indicate both the number of frames
to be corrupted (whose time indexes have been sampled uniformly without replacement
from the entire sequence) and the number of people affected by the noise. For example,
in a sequence with 100 frames and 8 persons, setting a noise of 25% means to have
25 random frames where 2 random individual per frame are affected by noise. Consid-
ering the following size of the window K = {1, 2, 3, 4, 5} of frames, we explore our
approach applying the temporal integration.The Jensen-Shannon divergence has been
used to generate the similarity matrices because it produces the better results in the
single-frame experiments, outperforming the KL divergence in both the datasets. To
combine the different similarity matrices in a buffer of K-frames, we used the average
of the possible weights produced by the algorithm (Sec.4.1) normalized by their sum.

5.5 Discussion

Having these experimental evidences we can provide an overall final analysis. The pro-
posed approach is to be preferred over the others under a wide variety of different
scenarios. The performance are incredibly stable under both noisy (real) and ideal (syn-
thetic) set. For example we have highest performance in the CoffeeBreak even if it is
a very noisy dataset in terms of head orientation since only 4 orientations are possible
while the Synthetic is an ideal case in which we reach 100% in precision and recall.
From the single frame experiments it is clear that the Jensen-Shanon measure produces
the highest and more stable performance. This seems to suggest that, while modeling
a pairwise social interaction, it is reasonable to assume that both the individuals want
to maintain a connection with the same strength, implying a symmetric affinity. More-
over the comparison between the multi frame and the single frame with noise reveals
the meaningfulness of considering consecutive instants of the same scene to strengthen
noisy detections. Concluding the blocks that absolutely contributed the most in this
work and that represents the main novelty, has been the biologically inspired model
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Fig. 5. Multiple-frame results: lines report the multiple-frame approach, with different level of
noise: 0%, 25% , 50% and 75%. In this plot we show the worst case in which noise variance
γ = 2

3
π. As visible, when noise is injected, the multiple-frame consistently outperforms the

single-frame approach (first point of each curve). Mean value of the standard deviation for the
precision is 1.61% and for recall is 1.73%.

of the frustum, which capture far better the sociological interaction between individual
with respect to the previous approaches, and the game-theoretic temporal integration
which provides a principled way to efficiently prune noise by smoothing data across
multiple frame.

6 Conclusions

In this paper we have proposed a new method for detecting conversational groups (F-
Formations) that can be included in a typical surveillance pipeline or on top of a persons
detector. The method has been designed to cope with very diverse realistic scenarios,
dealing with both single/multi frame sequences, noisy tracking, missing detections, in-
accurate face orientations and groups of any cardinality. This impacts several domains,
like surveillance & security, behavior analysis, group detection, scene understanding
and social signal processing. The approach improves upon existing methods by build-
ing a stochastic model of social attention from which the probability of an o-space ex-
isting between candidate pairs can be quantified using entropic measures.The resulting
affinity matrix turns out to be more accurate than the ones used in the literature outper-
forming the actual state of the art. F-formations are extracted using a game-theoretic
clustering approach which is able to efficiently find coherent groups in edge-weighted
graphs. This game-theoretic perspective allowed us to integrate in a principle way the
information coming from multiple consecutive frames, in an attempt to deal with noisy
situations, like in a crowded scenario or due to inaccuracy of the detection algorithms.
Our extensive experiments on single-frame showed improvements over other methods
on five different datasets, while the integration with multiple frames allowed to augment
the overall group detection accuracy, especially in the case of strong noise. Moreover
encoding the frustum using an histogram makes the approach non-parametric and thus
able to accommodate newer frustum models without changing the rest of the method.
In the future, we plan to address the problem of modeling F-formations more deeply
by considering points of instability when people leave or join groups and to integrate
multiple cues (like gaze or body orientation) during the grouping process.
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